商功修筑〔七问〕

商功修筑〔七问〕

今有积筑圆城一座,计积四百八十八万五千三百四十四尺。只云下内、外周差一百八尺,上内、外周差四丈二尺。上、下外周差六十尺,上、下内周差六尺。下广少如高六尺,却多上广一丈一尺,高不及上内周一万六千二百二十四尺。令侵城撅壕,取土筑城。定壕广三丈,问内、外周,高及上、下广并濠深各得几何?

答曰:下外周〔九里三十步〕,内周〔九里八步二尺〕,广〔一丈八尺〕;上外周〔九里一十八步〕,内周〔九里九步三尺〕,广〔七尺〕;高二丈四尺,深一丈三尺二寸一万二百七十五分寸之七十四。

术曰:立天元一为城高,如积求之。得四百八十八万五千三百四十四为益实,一十八万六千九百四十八为益方,一万六千二百四十七为从廉,一为正隅,立方开之,得高二丈四尺。余依加减求之。求濠深术曰:四因城积,三除为实。又城下外周并入六个壕广及城外周,折半,以濠广乘之为法。实如法而一,即濠深合问。

今有筑方城一座,计积四千五百四十一万七千六百尺。只云下面外方减十步,余开方除之,并入下广,共得六十五步。又开方数少如上面外方三千五百四十六步,上面内外方差四步,上面外方多如下面内方六步。上、下广差三步,上广不及高五步一尺。令侵城四角周回撅圜池,取土筑城及烧砖包城。令池上广三丈五尺,下广三丈。计料,内、外城头合用条砖二千四百万个,其砖每个长一尺,阔五寸,厚二寸半。每人日常役二十四尺,每人日烧砖及包讫城砖三十个。今差夫五万人,一齐兴功。问上、下,内、外方、广及高,并兴功毕日、池深各几何?

答曰:下,外方〔一十里一十步〕,内方〔一十里〕,广〔二丈五尺〕;上,外方〔一十里六步〕,内方〔一十里二步〕,广〔一丈〕;高三丈六尺,池深二丈五尺五寸二千四百六十七分寸之四百八十三;兴功五十一日一千一百二十五分日之四百七十三。

术曰:立天元一为下广,如积求之。得四十一万二千三百四十八为益实,一万一千一百四十八步六分为从方,一万四千八百九十八步二分为从上廉,一百三十一步八分为益下廉,一为正隅,三乘方开之得下广。余依加减求之。求池深术曰:列积四之三而一于上,又一砖之积乘合用砖数,四之,五而一,加上为实。又城外方身外加四,三之,加六个池上广,为池外周。又池内周加六个池下阔,为池底外周;并而半之,为池底停周;又并池内、外周而半之,为池上停周。倍之,加底停周,以上广乘之于上,又倍底停周加上停周,以下广乘之,并上,如六而一,所得为法,除实,即池深。求兴功毕日术曰:置城积并入合用砖数,以二人乘之为实。并人日常积及人日烧用砖数,以共差夫乘之,得数为法,实如法而一,合问。

今有仰观台一所,计积一万八千五百二十八尺。只云并上、下袤为实,平方开之,得数减于上广,不及一丈三尺。却于上、下袤差同,又如高三分之一。上、下广差六尺。欲兴功补为圆台。上、下斜长就为圆径。限一日毕役,每人常积二十七尺,问上、下广袤,及高,大、小四段弧积、用徒各几何?

答曰:上广〔二丈一尺〕,下广〔二丈七尺〕,上袤〔二丈八尺〕,下袤〔三丈六尺〕,高二丈四尺;二大弧积七千七百二十尺,徒二百八十五人二十七分人之二十五;二小弧积二千七百二尺,徒一百人二十七分人之二。

术曰:立天元一为台上广,如积求之。得一万八千七百七十四为益实,七百二为益方,三百九十一为从上廉,三十六为益下廉,一为正隅,三乘方开之得上广。余依加减求之。求二大弧积术曰:上广减于上弦,余半之为上两边各补之广,上袤内加补广,为上两边各补之长。又下广减于下弦,余半之,为下两边各补之广,下袤内加补广,为下两边各补之长。倍上长,加下长,以上广乘之于上。又倍下长,加上长,以下广乘之加上,以高乘之,如六而一,得二大弧之积。如每人常积除之,得用徒。求二小弧积及用徒者,如前术入之即得,合问。

今有造龙尾堤一所,只云高多上广二尺,如下广三分之二。高并上广自乘,不及袤九十六尺。每人日程常积二十九尺,用徒一千八百四十人,限一日役毕。问堤上、下广及高、袤各几何?

答曰:上广一丈,下广一丈八尺,高一丈二尺,袤五百八十尺。术曰:立天元一为堤高,如积求之。得四万二十为益实,二十五为益方,五十二为从上廉,五为益下廉,二为从隅,三乘方开之得堤高,合问。

今有造仰观台一所,只云上、下袤差一丈四尺。并上、下广虚加二为实,六为从方,一为从隅,平方开之,不及上广八尺。上袤多于上广二分之一,高多下袤七尺。每日用徒二百二十七人,每人日程常积二十四尺。五日役毕,问台上、下广、袤及高各几何?

答曰:上袤〔二丈四尺〕,下袤〔三丈八尺〕,上广〔一丈二尺〕,下广〔二丈六尺〕,高〔四丈五尺〕。

术曰:立天元一为台之上广,如积求之。得七万七千六百四为益实,一千八百一十三为益方,五百四十六为益上廉,三十一为从下廉,六为从隅,三乘方开之即台上广,合问。

今有造圆台一所,只云并上、下周、高为实,平方除之,如上周弱半。高与上、下周差同,高多开方数二分之一。每日用徒一十九人,限一十二日役毕。每人日程常积三十二尺。问台高及上、下周各得几何?

答曰:上周〔四丈八尺〕,下周〔七丈二尺〕,高〔二丈四尺〕。

术曰:立天元一为开方数,如积求之。得一十三万一千三百二十八为益实,二十八为从二廉,八为益三廉,一为正隅,四乘方开之,得十二为开方数。倍之,即高。余依加减求之,合问。

今有造方台一所,共支功食钱二百五十七贯六百二十二文七分文之六。只云以台高为正实,十为益方,一为正隅,平方开之。所得再为实,开平方除之,少如先开方数。中半上方,多如先开方数强半。上、下方和得三十八尺,每人日程常积二十八尺,每三人支钱二贯四百七十七文七分文之一。用徒日自倍,令四日役毕。问台上、下方、高及逐日用徒、支钱各几何?

答曰:上方〔一丈六尺〕,下方〔二丈二尺〕,高〔二丈四尺〕。

初日二十人五分人之四,钱一十七贯一百七十四文七分文之六;次日四十一人五分人之三,钱三十四贯三百四十九文七分文之五;三日八十三人五分人之一,钱六十八贯六百九十九文七分文之三;末日一百六十六人五分人之二,钱一百三十七贯三百九十八文七分文之六。

术曰:立天元一为后开方数,如积求之。得六千五百五十二为益实,三千六百一十为从上廉,七百四十一为益三廉,七十八为从五廉,四为益隅,七乘方开之,得二尺为后开方数。自之,即先开方数。四之,为台上方。余依加、减求之。每日用徒及钱者,如法求之,合问。

读书导航