与保罗·爱多士失之交臂

与保罗·爱多士失之交臂

蔡天新

数学家是将咖啡转变成定理的机器。

——保罗·爱多士

1

任何一个喜欢旅行的人都会羡慕这个人的,除了推销员、导游、外交官、空姐以外,他可能是在天上逗留时间最久的人。他没有固定的职业和收入,却成天住宾馆,吃饭店,自有人掏钱埋单。他是一个十足的神童,拥有一副举世无双的头脑,后来成为历史上最丰产的数学家,在许多领域都做出了开创性的贡献。他就是我正在阅读的传记《我的大脑敞开了》(上海译文出版社)主人公——匈牙利人保罗·爱多士。60年代初他来北京,见到了中国数学家华罗庚,而传记的译者之一王元,当时是华的助手和合作者,却跑到上海看朋友去了。这个细节没有在书中出现,是元老亲口告诉我的。将近三十年以后,爱多士再次来中国,不仅见到了已是中国科学院院士的王元,还到济南参加一个学术会议。笔者那时正好在泉城读研究生,一个阴沉沉的秋日下午,我和爱多士在山东大学留学生楼的一间套房里,关起门来讨论数学问题。

我记得爱多士当时写给我的,是某一类数论函数的均值估计问题。我没有做出来,却研究出了另一类数论函数的均值估计,那是我的导师潘承洞的胞弟——北大教授潘承彪带给我的,这类数论函数均值估计的先驱人物也是爱多士。换句话说,我改进了他的结果,准确地说是改进了他和一位叫阿拉底的印度数学家合作的结果。不仅早早发表在《科学通报》上,提前获得了硕士学位,而且借此夺得了山东大学首届研究生论文比赛的头名。尽管如此,我没有成为爱多士数1(与爱多士合作发表论文),这是我的终身遗憾。新世纪的第一个春天,我在日本九州岛参加一次数论会议,阿拉底来了,爱多士却已经故世。阿拉底如今是美国佛罗里达大学教授,那次会议期间,他除了学术报告以外,还应邀为福冈大学的学生做了一次公众演说,讲他的同胞数学天才拉曼纽扬的故事,也讲爱多士的故事。

翻开《我的大脑敞开了》这本书的第三页,我便看到了阿拉底的名字,原来他是得到过爱多士帮助的众多年轻数学家之一。1974年,当阿拉底还是马德拉斯大学的学生时,就对一些数论问题进行了研究,并提出了自己深刻的见解,连身为马德拉斯数学研究所所长的父亲都无法解答。后来,在朋友的建议之下,阿拉底写信给爱多士。由于爱多士长年旅行在外,他将信寄到匈牙利科学院。令人惊讶的是,阿拉底很快收到了爱多士的回信,告诉他不久要到加尔各答讲学,问他能不能去那里会面。不巧阿拉底要参加一次重要的考试,只好央求他的父亲代劳。当阿拉底所长介绍完他和他儿子的工作,爱多士用诚恳的语气说:“我对父亲没有兴趣,但对儿子有兴趣。”

爱多士决定去见见这个年轻人,那时他计划好了要去澳大利亚,因而只得重新安排行程,以便在马德拉斯作短暂的逗留,那里离开加尔各答有一千三百多公里。当阿拉底在加尔各答机场迎接到心目中的数学大师时,心里有点忐忑不安,可是爱多士开口就吟诵一首有关马德拉斯的歌谣,这让他大为放松,然后他们就开始讨论起数论问题。爱多士被阿拉底的天分感动,当即为阿拉底写了一封推荐信。不到一个月,阿拉底就得到了洛杉矶加州大学的校长奖学金,一位未来数学家的道路就这么铺就了。而爱多士自己在马德拉斯演讲所得的报酬,则全部捐献给了印度数学天才拉曼纽扬的遗孀。爱多士从未见到过拉曼纽扬和他的妻子,但他学生时代就为这位印度人发明的美丽方程式所感动,正是这种感动导致了他对印度的终身兴趣和对印度数学家的不懈支持。

2

1914年3月26日,保罗·爱多士出生在多瑙河畔的布达佩斯,就像爱尔兰作家詹姆斯·乔伊斯的小说《尤利西斯》的主人公布卢姆一样,双亲都是匈牙利犹太人。虽然以色列奉行的对外政策长期以来并不被世界人民所一致接纳,可是犹太人在经济、科学、文化和艺术领域的杰出贡献却是有目共睹的。仅仅在匈牙利科学界,20世纪就有约翰·冯·诺伊曼,数字计算机和博弈论的发明者;爱德华·特勒,氢弹之父;西奥多·冯·卡门,超音速飞机之父;乔治·德·赫维希,同位素跟踪技术的发明者。在艺术领域,则涌现出了钢琴家奥尔格·索尔蒂和乔治·塞尔,指挥家安塔尔·多拉蒂和欧仁·奥曼迪,作曲家贝拉·巴托克和左坦·柯达里,设计大师拉依罗·霍莫伊纳吉、娱乐业巨子威廉·福克斯、制片人米歇尔·克迪斯和电影导演阿道夫·祖可,等等,以至于有人戏称布达佩斯为“犹达佩斯”(Judapest)。

爱多士的父母是帕兹马尼大学数学系的同学,婚后父亲在一所中学里任教。其时在奥匈二元君主政体统治了半个世纪以后,匈牙利的经济和文化业已达到了辉煌的顶点。可是,就在他的母亲住进医院准备分娩的时候,一场可怕的猩红热席卷了布达佩斯。等到她带着保罗从医院回到家里,他的两个姐姐已经死去,伤心透顶的双亲便将他们全部的爱与精力倾注到这个灰眼睛的男孩身上。当保罗刚满三个月,奥匈帝国王储斐迪南在萨拉热窝遇刺身亡,引发了第一次世界大战。奥匈帝国向塞尔维亚宣战,紧接着俄国也卷了进来,向奥匈帝国宣战。这场战争意味着匈牙利黄金时代的结束,老爱多士应征入伍,他很快就被俄军俘虏,在西伯利亚度过了六年的铁窗生活。

这一情景使我想起19世纪中叶,匈牙利诗人裴多斐也被俄军所俘,七年后因患肺结核死于西伯利亚。所幸老爱多士从西伯利亚集中营活过来了,当他返回布达佩斯时,保罗已经是一个漂亮的小男孩,他的犹太式家庭教育也开始了。数学当然是核心课程,但外语也有着同等重要的地位。除了德语以外,父亲把在西伯利亚为驱散严寒和饥饿学会的法语和英语也传授给他。可是,与几乎所有的匈牙利人一样,爱多士的英语带有浓厚的口音,对这一点我本人记忆犹新,据说所有有关爱多士的纪录片都对他的讲话配上了字幕。作为一名中学教师,爱多士的父亲所能教给儿子的自然是有关整数性质的数论知识,尤其那些被称作是原子的素数。而爱多士本人也和大多数数学神童一样,对素数发生了无法驱散的兴趣,从欧几里得《几何原本》里提到的素数有无穷多个直到包括孪生素数猜想在内的两个相邻素数之间的间隔。

与大多数神童一样,爱多士的生活能力并不强,11岁那年,他终于学会了自己系鞋带,第一次进了学校,并且一下子就上了六年级。尽管学校里严格的课堂纪律使爱多士独立的心智受到了压抑,他的成绩仍在班里名列前茅,唯一没有取得A的科目是绘画。当时他最喜欢的课是历史,并且终生保持了这一爱好。促使爱多士把兴趣转向数学的是一本叫《中学数学》的杂志,那上面提供一些挑战性的题目,并且把优胜者的照片刊登其上。这些问题有许多是数论领域的,父亲先期教育的效应得以显示出来,小爱多士的照片很快被刊登出来,这份杂志一直伴随着他读完中学。尽管当时反犹主义猖獗,“名额控制法”将犹太人的大学入学率限制在总数的6%,爱多士仍被布达佩斯大学录取,在那里他遇到了不少从前在杂志上见到过的模糊面孔,爱多士的数学之舟开始扬帆了。

3

1934年9月,年仅21岁的保罗·爱多士登上了火车,第一次离开了匈牙利,这是他无数次数学之旅中的头一回。此前几个月,他刚刚在双亲的母校——帕兹马尼大学获得了博士学位,英国的曼彻斯特大学向他提供了一笔一百英镑的奖学金。可是,爱多士并不能享受旅途的愉快,相反,他感到有些疲惫,甚至不知道如何在火车上对付一日三餐及其他琐事。唯有数学技艺的交流给他带来乐趣,路过瑞士他第一次敞开了大脑,在苏黎世拜访了一位数学家。10月1日早晨,爱多士永远记着这一天,他乘坐的火车抵达剑桥,来不及参观这所举世闻名的大学城,他又一次敞开了大脑,与两位前来迎接的数学同行来到三一学院作长时间的学术探讨。然后,他们在一起共进午餐,同行们这才发现,爱多士还从来不会在面包片上涂抹黄油。

在对剑桥大学做了短促的访问以后,爱多士继续坐火车来到曼彻斯特。这座如今以足球闻名于世的城市,那时还只获得过两次甲级联赛冠军和一次足总杯冠军,并且这个成绩也是在20世纪初取得的。可是,曼彻斯特大学的数学研究中心却早已名声在外,由于欧洲大陆日渐上升的紧张气氛,它吸引了众多的外国访问者前来讲学或合作研究。事实上,当时欧洲大陆的知识分子还没有想要移民到大西洋彼岸的美国,曼大数学系主任莫德尔教授本人就是个美国人,他中学毕业后好不容易才凑足路费来到英伦求学,经过刻苦的奋斗成为知名的数论学家。以莫德尔命名的猜想的解决最终导致了费尔马大定理的证明,并且在后面那个证明得到确认之前,前一项工作一直被认为是上个世纪数论领域所取得的最重要的成就。

在曼彻斯特逗留期间,爱多士和一位德国数学家以及莫德尔的中国学生柯召合作撰写过一篇组合理论方面的论文,包括著名的爱多士柯拉多定理。可是,由于当时的数学界对组合理论缺乏兴趣,这项工作迟至1961年才得以发表,立时成为一篇经典文献。柯召先生是我的老乡,他刚刚于去年年底谢世,在他80岁生日的宴会上,我们曾在成都用地道的浙江方言做过交谈。柯召在曼彻斯特取得博士学位后返回祖国,一直在四川大学和重庆大学执教,爱多士第一次来中国正是应他的邀请,他和华罗庚作为仅有的两位数论学家同时当选为中国科学院的首批学部委员。遗憾的是,柯召回国后虽然培养出不少优秀的数学人才,却再也没有取得可以和当年相媲美的成就。

在英伦的四年期间,爱多士并不满足于待在一座城市,事实上,他几乎没有连续一个星期在同一张床上睡过觉,总是敞开着大脑,穿梭于曼彻斯特、剑桥、布里斯托尔、伦敦或其他大学城之间。那个时候,青年爱多士的工作已显露出独特的个性:游戏、灵敏和原创。例如,他猜想,一个正方形可以分割成若干个大小不等的正方形,直到四十多年以后,才有人证明了这些小正方形的最少个数为21。而在二次大战期间,有一位叫塔特的英国青年就因为研究爱多士的这个猜想取得的成绩而被推荐去参与一项秘密的军事计划,结果他们找对了人,塔特成功地破译了德国潜水艇艇长们发出的电码,使得盟军顺利截获和捣毁了敌方的物质供应船只,从而大大缩短了战争的进程,这大概是英国邀请爱多士访问获得的最好报偿。

4

1929年10月24日,纽约股票出现猛跌的那个黑色星期一,导致了长达十年之久的全球经济大恐慌,直到第二次世界大战爆发后,在战争的刺激下才有所恢复。就在那个黑色星期一到来前一个多月,美国第四大零售连锁店班伯格公司(Bamberger)的老板,凭着敏锐的洞察力,把公司转让了出去。此后,或许是出于内疚的心理,班伯格兄妹拜访了著名的教育家弗莱克斯纳医生,后者建议他们放弃捐献一座医学院的冲动。如同毕达哥拉斯学院那样,弗莱克斯纳设想了一个知识分子的伊甸园,“一个安全的避风港,科学家和学者在这里把世界和它的种种现象作为他们的实验对象,而他们不会被强行卷入近期的旋涡中”。所谓“近期旋涡”指的是纳粹德国和法西斯主义引发的那场灾难,其时正失控地在世界范围内蔓延。

这就是普林斯顿高等研究院的来历,爱因斯坦是被邀请来的首席教授。所有终身教授都被免除了作为人的种种烦恼,包括交水电费在内的家务活计,填写申请基金之类的各类表格,甚至发表论文或向上司汇报工作,等等。换句话说,一旦进入了研究院,你就得到了充分信任,可以依据自己的兴趣做任何研究。事实上,相当一部分时间,数学家和理论物理学家们在修剪得整整齐齐的草坪上散步,在公共客厅里喝咖啡闲聊或没完没了地下棋。尽管如此,他们却做出了惊人的贡献,常常是一生最好的工作,比如英国数学家安德鲁·怀尔斯,七年没有发表一篇论文,最后完成的是费尔马大定理的证明。这些现象表明,弗莱克斯纳医生对人类文明的贡献并不亚于另一位医生——奥地利精神分析学家弗洛伊德。

1938年夏天,爱多士从英国回到匈牙利过暑假。9月初,刚刚吞并奥地利的希特勒要求合并苏台德地区,这是捷克斯洛伐克讲德语的一个地区。爱多士被震惊了,就在这个时候,普林斯顿向他伸出了橄榄枝,邀请他做访问学者。24岁的爱多士与亲戚朋友(这些人中相当一部分后来死于战争)匆匆告别,乘上火车,向南绕道潘诺尼亚平原、意大利和瑞士来到巴黎,最后抵达伦敦。月底,爱多士乘坐“玛丽女王”号前往纽约,转道新泽西,迈出了世界之旅的坚实一步。爱多士一直认为,他初到普林斯顿那年是他学术生涯最为成功的一年。例如,他证明了任意多个连续整数之积不会是一个完全平方数,这个结论再次使人相信数字结构的有序性。又如,他和波兰人卡茨得到了爱多士卡茨定理,说的是小于N的整数所含的不同素因子个数与一枚硬币抛N次正面向上的次数遵守同样的曲线分布,这个结论表明整数规则的表面背后实际上隐藏着混乱。

可是,爱多士喜欢并擅长的那类数学问题在当时并不受重视,原因是它们和近期数学的发展趋势没有关系。而在爱多士看来,他原先精通的数学仍然蕴涵着无穷的宝藏,那为什么不去继续开采它呢?何况那些问题是数学中最美丽的部分。正如他的一位合作者所分析的,“爱多士的想象力和技巧是如此的深刻,不用走出太远,就能开辟出一条永不干涸的溪流。而其他人由于想象力不够深技巧不够精,只好通过更多的数学,才能产生想法和新的定理”。无论如何,年轻的爱多士还是没有被普林斯顿续聘,这让他愤愤不平。当伊甸园的大门在他身后关上时,爱多士不得不又开始了新的数学之旅,从那以后,他便成了真正的游子。但他心胸宽阔,战后仍经常光临普林斯顿,正是在那里他凭借初等方法证明了古老的素数定理(令人费解的是,另一位独立证明这一定理的挪威人凭此获得了菲尔茨奖)。

5

有一次,爱因斯坦的助手斯特劳斯教授谈到他的担忧,“一个人可能会在某些问题上耗尽精力,却始终不能发现关键所在”。爱因斯坦自己也认为,他之所以没有成为数学家是因为这个领域充满了漂亮而困难的问题。爱多士却义无反顾地深入到爱因斯坦所惧怕的诱惑之中,而他的确也从未陷入不切要害的泥潭之中。他们分别使我想起17世纪的两位天才人物,费尔马和牛顿,前者全身心地投入到纯粹的数论问题中,后者发明了微积分、三大运动定律和万有引力定律而成为历史上最有影响力的科学家。尽管如此,斯特劳斯认为,“在探索真理的征途中,唐璜式的爱多士和加拉哈式的爱因斯坦式各有用武之地”(唐璜是艺术家虚构的浪荡子,加拉哈则是传说中的骑士)。遗憾的是,在我解决了最初那类均值估计问题以后,一位前辈学人因循传统的观念,告诉我爱多士的那类工作都是小问题,这一友善的忠告使我没有坚定地沿着自己擅长的方向走下去。直到费尔马大定理被证明以后,包括王元先生这样的有识之士才认识到,数论学家应该回到爱多士开启的轨道上来。

爱多士是一位苦行僧,他放弃了尘世的享乐和物质追求而去过一种殚精竭虑却又不被人们理解的生活。他和牛顿一样,终生没有结婚,甚至没有谈过恋爱,但那不是数学的缘故,而可能是先天的体格原因。“我无法经受性爱的欢乐”,即使最轻微的身体接触也会让他敬而远之,当陌生人跟他握手时,他最多也就是用其柔软的手与对方擦一下,即便那样他也会感到不舒服,会一整天强迫自己洗手。并不是没有女人喜欢他,而是关键时刻他都会逃之夭夭。可是,究竟是什么使得数学让爱多士如此陶醉而又如此憔悴呢?除了前面提到的游戏、灵敏和原创性以外,数学无时不在的挑战性像鸦片一样刺激着爱多士的神经,他的大脑始终敞开着,还有一对机警的耳朵,素数定理的初等证明和哥尼斯堡七桥问题的推广这两项工作就是道听途说和电话线里被他捕捉到的。

伯特兰·罗素,一位有过四次婚姻,一生留下许多风流韵事的数学家兼哲学家(他的秘密情人中包括诗人艾略特的第一个妻子),部分是由于他的文笔优美、雅俗共赏而意外地成为诺贝尔文学奖得主,年轻时也非常迷恋数的世界,并写诗赞叹,“我曾渴望读懂人们的心窝。/我曾渴望知道星星为什么闪烁。/我曾试图了解毕达哥拉斯的神力,/有了它,数字不再摇曳不定”。罗素出身贵族,其祖父两度出任英国首相,三岁的时候父母双亡,他在祖母的严格管教下长大,接受了清教徒式的训练,少年时代一度萌生了自杀的念头,正是数学使他摆脱了青春期的孤独和绝望。虽然后来转向了哲学研究,但终其一生,罗素从数学中获益匪浅,他的哲学名著的标题就叫《数学原理》(与怀特海合作),该书对逻辑实证主义的观点进行了新的解释,同时为哲学研究提出了新目标和新问题。

与爱多士同时代的匈牙利数学家冯·诺伊曼也是一位活力四射的人物。他是通才的样板,在数理逻辑、集合论、连续群、遍历性理论、量子力学和算子理论方面取得了卓越的成就,同时,他又是现代电子计算机和博弈论之父,在物理学和经济学领域有着巨大的影响力。连爱多士也不得不承认,冯·诺伊曼的反应速度和理解力是非同寻常的。他不仅思维敏捷,而且穿着时髦、风趣迷人,喜欢跑车和女人,爱写打油诗、讲黄色故事,对噪音、美食、酒和金钱一概不排斥。我在这里举罗素和冯·诺伊曼的例子无非是想说明,数学家的个性因人而异,与数学自身的特点并无必然的关联。只不过,对冯·诺伊曼来说,他的数学可能源自于经验,他的生活也大体如此;而对爱多士来说却不是这样,至少在我看来,他的数学直接源自于那颗无时无刻不敞开着的脑袋。1996年秋天,爱多士在华沙发表组合论演讲时突然死于心脏病,在那颗神奇的脑袋停止工作以后,数学的一个巨大的源头被堵塞了,人类或许要等上一个千年,才有可能重新找回。

(选自《书城》,2005年第3期)

读书导航