冷聚变闹剧
(上)
1989年3月23日,美国犹他大学举行新闻发布会发布一条震惊世界的重大消息:化学家马丁·弗雷希曼(Martin Fleischmann)和斯坦利·庞斯(Stanley Pons)实现了世界各国众多物理学家研究了几十年也没能成功的梦想--受控核聚变,人类有望一劳永逸地解决能源问题了。
核聚变是指两个较轻的原子核相遇聚合成较重的原子核,并释放出巨大的能量,例如太阳能就是来自于太阳内部氢原子聚合成氦原子的聚变。但是原子核都带正电,两个原子核要聚合在一起,首先要克服同性电荷之间的斥力。氢原子核只带一个正电荷,斥力最小,聚变也最容易,如果能利用水中氢的同位素氘的聚变获取能量,可供人类用上几百万年,而且没有核废料,可谓理想的能源。不过,要让氘实现聚变,需要将它加热到上亿度的高温才能克服斥力,怎么控制如此炽热的物质?不加控制的话,就变成氢弹了。目前物理学家在探索用一种叫托卡马克的大型而昂贵的装置来实现受控核聚变,在弗雷希曼和庞斯宣布其发现的时候,托卡马克还只能让聚变过程持续几毫秒,而且获得的能量少于消耗的能量,根本不实用。
但是弗雷希曼和庞斯宣称,他们能让聚变在室温下就能进行,所以被称为“冷聚变”,与热聚变所需的上亿度高温相比,室温的确够冷。他们所用的装置不是昂贵的反应堆,而是一个简单的电解池:将一对用稀有金属制造的电极(正极是铂,负极是钯)浸入到盛有锂盐和重水的玻璃瓶,通上电流就能让重水中的氘发生聚变。整个装置的费用大约也就100美元。
首先有这个主意的是弗雷希曼。他曾是英国南安普敦大学电化学系主任。做为一名著名的电化学家,他知道如果用钯做电极,很容易吸附氢离子。多年来他一直在想,有没有可能利用钯的这个特性,用电解的方法让氘发生聚变呢?1984年,他从南安普敦大学退休后,到犹他大学拜访以前的学生、长期合作者庞斯,决定实现他多年的梦想。两人秘密地从事这一研究,最开始是在庞斯家的厨房做实验,之后把实验装置搬到犹他大学化学楼的地下室。因为是秘密实验,他们只能自掏腰包购买实验器材和材料。
他们知道,如果重水中的氘发生了聚变,就会释放出中子。他们用一个简单的中子探测器来检测在钯极是否有中子辐射。有时候能检测到比本底高一些的中子数目,但是最多也只比本底高50%。
作为电化学家,他们对放热现象很感兴趣。他们用一个恒温水浴箱做为量热器,把电解池泡在水浴中,测量电解池和水浴的温差,就可以知道有多少热从电解池释放出来,由此可以算出输出的能量,把输出的能量与输入的能量(通电的电能)相比,可以知道是否产生了多余的能量。他们发现,有时候输出的热能的确要比输入的电能多,能多出10%~25%。他们认为这些多余热能就是聚变产生的。他们推论说,如果使用一个超大型的电解池,就能让输出热能与输入电能的比提高到4:1。在新闻发布会上,这个“推论”被做为事实提供给了媒体:用1瓦电能产生4瓦的热。