第23章 贝叶斯定理:辛普森杀死前妻的概率有多大?(2)

时光飞逝,我给一届又一届的学生讲授概率课。在这些聪明学生的启发下,我慢慢地发现了一套理解条件概率的更好的办法。贝叶斯定理看上去很令人迷惑,而这些学生教我的方法则完全顺应人的直觉。这个方法的窍门就是,不要去想抽象的概率、机会、百分比之类的概念,而是直接考虑事情发生的次数(显然,这是一种更为自然的频率计算法,也可称为事件的“自然频率”)。只要转变思路,一切就都豁然开朗了。

就职于柏林马克思·普朗克人类发展研究所的认知心理学家捷尔德·盖格瑞泽写了一本非常有意思的书,书名为《风险的计算》。在这本书中,盖格瑞泽举出了很多他在研究中发现的人类对风险和不确定性的误判和错误计算。算错概率的例子遍及各个领域:从艾滋病治疗到脱氧核糖核酸(DNA)指纹图谱的识别。虽然我们计算概率的时候常常错得离谱儿,但是这位仁慈的心理学家并没有责骂我们的愚蠢,也没有哀叹人类的脆弱,他只是耐心地告诉我们怎样才能减少这类错误。盖格瑞泽的方法和我的学生们发明的方法差不多,那就是,当面对条件概率问题的时候,不使用抽象的概率和百分比,而是依赖最自然、最原始的计数方法:计算事件发生的次数(自然频率)。

在其中一项研究中,盖格瑞泽和他的同事请德国和美国的医生们来解答这样一个问题:如果一位妇女的乳房X射线检查结果呈阳性,但是这位妇女又属于乳腺癌发病风险较低的人群(年龄在40~50岁,无家族乳腺癌病史,本人无乳腺癌症状),那么她罹患乳腺癌的概率到底有多大?为了把问题进一步具体化,盖格瑞泽给受访的医生们提供了如下信息:一是这个人群中乳癌的发病率,二是乳房X射线检查的灵敏度和阴性被误判为阳性的概率。这些信息都是以概率和百分比的形式给出的,具体数据如下:在年龄为40~50岁、无家族乳腺癌病史、本人无乳腺癌症状的妇女中,乳腺癌发病率是0.8%。如果一位妇女确实患有乳腺癌,那么乳房X射线检查呈阳性的概率是90%。如果一位妇女没有患上乳腺癌,但乳房X射线检查结果呈阳性的概率为7%。现在,有一位妇女,她属于乳腺癌发病风险较低的人群,但是她的乳房X射线检查结果呈阳性,请问她实际患有乳腺癌的概率是多少?

盖格瑞泽询问的第一位医生是一所大学附属医院某部门的主任,对于乳腺癌的诊断,这位医生有着超过30年的专业经验。根据盖格瑞泽的描述,这位医生对上述问题的反应是这样的:

我提出这个问题以后,这位医生显得很紧张,他很努力地想要算出正确的数值。在仔细研究过我给出的数据以后,这位医生判断,在乳房X射线检查结果呈阳性的前提下,这位妇女实际患有乳腺癌的概率是90%。回答完这个问题以后,这位医生又立刻推翻了自己的答案,他紧张地说:“我肯定搞错了,我根本不会算。你应该去问我的女儿,她正在医学院读书。”显然,这位医生很清楚自己的答案是错误的,但是他却不知道怎么才能算对。虽然他对这个问题冥思苦想了足有10分钟,但他却根本不清楚应该怎样使用概率。

同样的问题,盖格瑞泽又询问了24位德国医生,这些医生给出的答案五花八门。有8位医生认为,这位妇女实际患有乳腺癌的概率应该为10%或者更低;另有8个医生认为,这位妇女实际患有乳腺癌的概率是90%;剩下的8名医生认为,这位妇女实际患有乳腺癌的概率为50%~80%。想象一下,如果你是一位病人,听到这些结果不一的诊断意见,你的心里会有多么痛苦。

读书导航