从传统统计学的角度来说,幂律分布的性质非常奇怪,完全不符合人们的直觉。正态分布的平均数、众数和中位数都相等;而幂律分布的L形是歪斜的、不对称的,所以幂律分布的平均数、众数和中位数并不相等。小布什总统就曾在他的竞选演说里利用过幂律分布的这个性质。小布什总统声称,2003年的减税计划让每个美国家庭平均少缴纳税款1 586美元。从技术上来说,这句话并没有撒谎,1 586美元是减税额度的平均值,但这个说法却带有很强的误导性。因为幂律分布是高度不对称的,最左侧0.1%的富裕家庭中,每个家庭可能获得数万美元的减税数额,减税额度的平均数被这些家庭严重地拉高了。而右侧这个长长的“尾巴”才能反映出普通家庭获得的减税数额,这个“长尾”服从幂律分布。在幂律分布的情况下,平均数并不能反映出大部分家庭获得的减税额度。事实上,减税额度分布的中位数是650美元,也就是说,一半以上的家庭获得的减税金额不足650美元。从这个例子可以看出,幂律分布的平均值和中位数的差异很大。
上面的例子展示出幂律分布的最大特点:长尾分布,长尾分布又称肥尾分布或重尾分布。相比正态分布,长尾分布中极端情况发生的概率会更大。当然,和正常情况比,极端情况仍然是极少发生的,但是如果把一个长尾分布误认作正态分布,我们就可能会严重低估极端情况的发生概率。
1987年10月19日被称为金融市场的“黑色星期一”。那一天,美国道?琼斯工业平均股票指数一日之内暴跌了22%。相比正常交易日中股市的波动幅度,那一天的跌幅远在22个标准差之外。如果我们用传统的正态分布钟形曲线来模拟股市,这一天的情况几乎是不可能发生的,22个标准差之外的极端情况的发生概率,应该在10的50次方分之一以下,而这种极端情况居然真的发生了。为什么呢?因为股市的波动并不服从正态分布,长尾分布比正态分布更适合用来模拟股市的变化。
除了股市的波动,地震、山火、洪水的发生也都不服从正态分布。这给保险公司的风险管理部门带来了更大的挑战。同样,战争和恐怖袭击等造成的死亡事件也不服从正态分布。当然,长尾分布并不是灾难的专利,小说里词汇的出现频率和人们的性行为习惯也都服从长尾分布。
虽然长尾、肥尾、重尾这几个名字并不好听,但随着长尾理论日益受到人们的重视,这几个词的出现频率也渐渐高了起来。我仿佛能听到这个极不对称的分布骄傲地指着自己的尾巴说:“说我长,说我重,说我肥?请搞清楚,我才是当下的常态。”