系统与球探的对决:球探赢了(1)

PECOTA 是“投手经验比对与优化测试算法”(Pitcher Empirical Comparison and Optimization Test Algorithm)英语单词首字母的缩写,这个冗长名称的缩略词正好是20世纪80年代堪萨斯城皇家队的内野手比尔·裴克达(Bill Pecota)的名字,那时的他对我钟爱的底特律老虎队而言一直是一个威胁。

PECOTA预测系统最初是为预测投手——而非击球手——的表现而设计的。投手的表现极难预测,因此在用WFG系统进行过数年实验之后——你肯定能猜出来这个缩略词代表的含义——《棒球规程》最终还是放弃使用它,于是年刊中的预测栏曾一度空白。意识到这是一个商机后,我向赫卡贝推荐了PECOTA系统。让我感到有些意外的是,他和《棒球规程》的同事们对这一系统一致认可,他们愿意以股权交换的方式购买PECOTA系统,条件是我得再开发一个相似的系统,用于预测击球手的表现。我欣然地接受了这笔交易。于是,第一组PECOTA预测结果便发表在2003年冬季的《棒球规程》上。

2003年赛季结束时我们发现,PECOTA系统确实比其他商业预测系统的效果要好一些。事实上,2003~2008年这几年,无论在我们自己还是别人的测试中,PECOTA系统的预测准确度总是与其他系统相当或高于其他系统,同时还推翻了拉斯韦加斯赌场惯用的台词。一些意外的成功使PECOTA名声大振,比如,芝加哥白袜队在2005年加冕世界联赛冠军,但2007年赛季PECOTA却预测该队只能获得72场胜利,惨淡结束赛程。这一预测必然招致芝加哥媒体和白袜队决策人员的一片骂声。但是,这个预测结果却惊人地准确:白袜队最终以72场胜利、90场失利的成绩结束该赛季。

然而,在2009年前后,PECOTA预测系统却被其他系统追上甚至赶超了。正如当年我借鉴詹姆斯和赫卡贝系统的优点一样,其他系统的研发人员也汲取了PECOTA系统的长处,并创建出自己的预测系统,而且有些系统非常棒。各个系统都会对大联盟球员的表现进行预测,如果每年都对这些系统的最佳预测结果做个排序,你会发现,那些最棒的预测系统彼此之间的差距不过一两个百分点。

但我当时之所以创立PECOTA,还有另外一个目的:对那些像佩德罗亚一样的小联盟球员的表现进行预测,这项任务可能要困难许多。因为当时鲜有预测系统对小联盟进行预测,直到最近才出现类似的系统,所以当时PECOTA系统唯一的竞争对手就是球探。

2006年,我首次公布了PECOTA系统预测出的100名最具前景的球员名单,和同时期《美国棒球》刊登的球探所列的名单形成对比。PECOTA系统依据这些球员入选大联盟后的前6个赛季中为球队做出的贡献对他们进行排名。

读书导航