《3D打印:从想象到现实》第2章 一台几乎可造万物的机器(6)

目前的挑战是原子以不可预知的方式走到了一起。数字设计在计算机屏幕上令人震惊,但理论上被制造出来后随时会坍塌,因为它不能突破重力和材料限制。相比之下,数字世界让我们放飞想象的翅膀,自由创造。数字世界急需制造出现实生活中不可能的形态。

控制材料构成:实体物品能不能也变成数字世界的“1”和“0”

在融合的第二阶段,3D打印会给我们带来对物质构成和材料构成的精确控制。多材料3D打印机将为新产品的生产打开大门,这种新产品由严格控制的原材料构成,其整体性能将大于部分之和。

试想在一个水彩调色盘中,将蓝色和黄色混合,可以形成无数深浅不同的绿色。在自然界中,22种氨基酸以不同的方式组合,创造出可以形成惊人物种的蛋白质。配备精确的设计文件的多材料3D打印机,可以将熟悉的原材料混合成全新的组合。

随着3D打印技术的不断发展,我们将看到很多由当前不可行的材料混合制成的物体。我们将看到可以自我修复的机器部件,或者看到可以将其长度延伸近10倍的无线网格。医疗设备将对特定病人的血型做出回应,或检测其体温变化。

控制材料组成的第二个渠道与第一个稍有不同。有一天3D打印机会制造出可控的材料。在虚拟世界中,所有的信息无论多么复杂,最终都可归结为它的本质,那就是两个基本单位:1或0。

相反,实体物品由丰富的、非模块化的螺旋结构的原材料制成,它的基本单位是原子,不那么规则且难以控制。由于材料在实体世界具有多样性,很难有意义地捕捉数字形式的“模拟”材料。结果是,模拟材料很难被精确地复制、控制和编程。

不兼容的原子是制造商的噩梦。诚然,3D打印机不能粉碎开放的原子,使它们更具可塑性。但是,3D打印机可以做的是将一度不能兼容的原材料巧妙地结合在一起,打印成单一的物品。

电子电路一直都臭名昭著,因为人们必须先单独制造出内部的陶瓷和塑料零件,然后加以组装,才能形成电子电路的金属部件。事实是,制作电路关键部件的原材料必须通过单独的制造机器生产出来,这决定了电路板是平坦的,由多个薄层构成。

读书导航