1.4 铝的腐蚀

1.4.1 铝自然氧化膜的稳定性

铝是一个两性金属, 在酸性介质中生成铝盐, 如果有硫酸根则生成硫酸铝, 在碱性介质中生成铝酸盐, 如果有氢氧化钠存在则生成偏铝酸钠。铝的自然氧化膜的热力学稳定性的条件可以用铝的“电位—pH图”形象地表示, 铝在不同的电位和pH范围时, 可能处于腐蚀区、 钝态区或免蚀区。从图1-2可以看出, 铝在pH4~8时, 而铝的电位约大于-2 V, 那么铝处于钝态, 即铝被表面氧化膜所保护。但是电位—pH图的钝态范围随温度是有些变化的, 这可能与存在的特殊形式氧化膜有关系, 也可能随着生成可溶性的铝络合物或不溶性的铝盐的性质不同而变化。铝在通常大气条件下, 表面形成一层很薄的氧化膜, 阻止了铝与周围介质的反应, 因此可以认为处于钝化区。

铝的表面氧化膜虽然具有自愈性, 即自修复能力, 但是如果氧化膜在不能自行修复的环境中遭到破损, 则腐蚀不可避免地就会继续发生与发展。所以铝的腐蚀过程, 可以用氧化膜在环境中的化学性质来解释, 或者说可以用金属铝与环境之间的化学反应加以解释。

铝的全面腐蚀有影响的因素有两个, 一方面是环境的类型和环境对于铝的化学作用, 另一方面是铝合金冶金学结构与环境的化学反应。周围环境是多种多样的, 从各种类型的室外大气到各种各样的介质, 包括各种土壤、 各种水、 不同的食品和化学品、 以及与之接触的不同的建筑材料等等。室外大气随地理位置和环境的不同, 分为农村大气、 工业大气和海洋大气等。农村大气的自然污染程度最小, 对于铝的腐蚀作用也最小。而工业大气和海洋大气, 由于分别存在不同程度的硫酸盐、 亚硫酸盐和氯化物等污染物, 对于铝的腐蚀作用就比较强。就海洋大气而论, 北方与南方的气温不同, 其腐蚀作用大小也完全不同。

大多数化学品和食品对于铝的耐腐蚀性可以大体分为三类:

(1)第1类全面腐蚀氧化膜, 例如各种碱和酸、 汞盐、 漂白粉水溶液、 液体氟化氢、 氯仿等, 铝在其中是不稳定的。

(2)第2类局部腐蚀氧化膜, 例如食盐水、 有机酸、 硝酸等, 铝在其中的稳定性是有条件的。

(3)第3类不腐蚀氧化膜, 一般在pH 5~8环境中铝氧化膜是稳定的。所以铝在其中是稳定的, 例如大多数食品。

当然上述分类是有条件的, 也是非常粗糙的, 或者说只是为了方便叙述, 实际上不可能是严格意义上的分类。

1.4.2 铝的局部腐蚀形态

由于铝属于钝化型金属, 其腐蚀形式除了在某些介质中发生全面腐蚀以外, 铝合金的主要的腐蚀形式是由于钝化膜局部破坏而发生局部腐蚀。铝合金的局部腐蚀主要有点腐蚀(pitting corrosion)、 缝隙腐蚀(crevice corrosion)、 电偶腐蚀(galvanic corrosion)、 晶间腐蚀(intergranular corrosion)、 层状腐蚀(layer corrosion)、 丝状腐蚀(filiform corrosion)等。其中点腐蚀、 缝隙腐蚀和晶间腐蚀是钝化型金属的最典型的腐蚀形式, 而层状腐蚀和丝状腐蚀更是铝的特殊的腐蚀形式。相对于全面腐蚀而言, 金属的局部腐蚀是金属设备或构件腐蚀破环的重要原因和形式。

(1) 点腐蚀(孔蚀)。点腐蚀是钝化型金属的典型腐蚀形式, 也是铝合金常见的局部腐蚀形态, 在铝合金处于钝态范围中最为常见。一般以无规则分布的腐蚀点为外观特征, 并且从金属表面不断向内部扩展形成腐蚀孔或腐蚀坑。通常腐蚀孔的深度要比直径大得多, 因此容易引起点腐蚀穿孔。在大气、 新鲜水或海水及其他中性水溶液中, 铝表面氧化膜的不连续缺陷位置都会发生点腐蚀。在缝隙位置或异种金属接触位置常常以点腐蚀形式发生与发展, 因此腐蚀外观通常也会出现腐蚀点或腐蚀坑。铝阳极氧化膜盐雾腐蚀试验的结果, 通常按照盐雾腐蚀以后表面的点腐蚀程度, 用点腐蚀级别加以评判。铝合金等钝化型金属材料, 环境因素在卤素离子特别是氯离子存在或其他特殊的介质中, 更容易触发氧化膜的局部破坏, 也就是更加有助于点腐蚀的发生和发展。从铝合金系的角度分析点腐蚀的敏感性, 则高纯铝最难发生点腐蚀, 而含铜的铝合金如2XXX系合金的点腐蚀敏感性最大。

(2) 缝隙腐蚀。缝隙腐蚀是金属与金属之间, 或金属与其他材料(包括非金属材料)之间的表面相互接触形成狭缝或间隙, 由于缝隙内外差异充气电池的作用, 使得缝隙内部或近旁(阳极区)的钝化膜局部破环, 从而发生的局部加速腐蚀的现象。缝隙腐蚀也是钝化型金属的一种特殊腐蚀形式, 铝合金的缝隙腐蚀比较常见。铝表面的沉积物或铝表面的结垢下面也可以认为形成了缝隙, 因此从腐蚀原理上讲, 沉积物腐蚀(deposit corrosion)或垢下腐蚀(scale corrosion)也是一种缝隙腐蚀。缝隙腐蚀的缝隙尺寸是一个临界指标, 过宽或者过窄的缝隙都不能构成缝隙腐蚀发生的条件, 但是临界尺寸大小并不是一成不变的, 它与铝合金成分、 溶液成分等操作参数有关。

(3)电偶腐蚀。电偶腐蚀发生在电位较负的金属铝与电位较正的金属(铜等)或非金属导体(石墨), 在导电性水溶液中直接接触或电接触发生的加速腐蚀现象。如果腐蚀电池作用发生在两个金属之间, 则称为双金属腐蚀(bimetallic corrosion), 有时也称为接触腐蚀(contact corrosion)。电偶腐蚀不应该与缝隙腐蚀相混淆, 其原理与过程都绝然不同。电位较负的金属处于电偶腐蚀状态时, 可能加速其他腐蚀形态的发生, 例如提高应力腐蚀开裂的敏感性等。电偶腐蚀的发生可能性, 可以从相互接触金属的腐蚀电位的差别大小来预估。杂散电流腐蚀虽然是一种电偶腐蚀, 但是杂散电流腐蚀并不是自然腐蚀的形式, 因为杂散电流腐蚀的电流来源, 是由于非指定回路上的外加电流或外界的感应电流(交流电或直流电)引起的, 只要消除了这种不希望发生的电流, 杂散电流腐蚀就可以防止。由于裸露的(没有氧化膜保护的状态)金属铝的自然电位非常负, 因此铝及铝合金的电偶腐蚀现象应该引起高度重视。

(4)晶间腐蚀。此种腐蚀是沿着金属晶界或紧靠晶界所发生的局部选择性腐蚀现象, 晶间腐蚀的原动力是由于晶界或晶界两侧与晶粒本身(基体)的电位差异。晶粒边界可能由于第2相的析出, 造成晶间与相邻晶粒或晶间与近侧贫化区的电位差, 从而引起晶间腐蚀而破坏了晶间与相邻晶粒的结合力。晶间腐蚀的金相特征为网络状, 在铝合金腐蚀中比较常见。例如在2024铝合金中, 晶间CuAl2的第2相析出物比基体的钝性更强, 在晶界的第2相析出物两侧都存在一条贫铜的窄带, 加速晶间附近贫铜区的腐蚀。Mg含量小于3%的铝合金(5XXX系中某些合金)是比较抗晶间腐蚀的, 而Mg含量大于3%的铝合金(5083)由于晶间析出的Mg2Al3是阳极相, 发生优先腐蚀而引起比较严重的晶间腐蚀。一般来说, 如果晶间的析出相呈连续链状分布, 则晶间腐蚀的敏感性最强。当晶间析出相断续分布时, 晶间腐蚀不容易发生。如果析出相的宽度越大, 则晶间腐蚀敏感性也越大。由于晶间腐蚀很难用通常的表面腐蚀现象加以分辨, 实际上用肉眼很难从表面直接观察到, 而且几乎不引起材料的质量损失或减薄, 为此成为金属设备或结构中危险性很大的一种腐蚀破坏形式。

(5)层状腐蚀又称剥蚀(exfloitation corrosion)。层状腐蚀是变形铝合金一种较为多见的腐蚀形式。其腐蚀特征是沿着平行于铝合金表面的晶间而扩展的一种选择性腐蚀, 从而使金属发生层状剥离或分层开裂。当金属铝与其他金属处于电偶接触状态时, 层状腐蚀可能会加速。如果层状剥离程度比较轻微, 一般只发生一些裂片、 碎末、 或者形成泡状突起。如果层状腐蚀相当严重, 则发生大片连续的层状剥落, 直至金属结构完全解体。对于Al-Mg合金而言, Mg含量越高, β相数量越多, 同时变形量越大, 晶粒被拉得越长, β相沿晶间析出的网络越加连续, 则此类铝镁合金的层状腐蚀越敏感。Al-Cu合金的层状腐蚀较少发生, 调整高强Al-Cu合金的时效处理工艺, 基本上可以克服此类合金的层状腐蚀问题。有些专家认为, 层状腐蚀与金属内部存在的应力引起的应力腐蚀有关系, 在适当消除应力的情形下可以降低或消除层状腐蚀。

(6) 丝状腐蚀(膜下丝状腐蚀)。丝状腐蚀是在有机涂层、 搪瓷膜等薄膜下, 从薄膜与金属基体界面开始发生的膜下呈纤维状的腐蚀形式, 丝状腐蚀在一定意义上可以理解为另一种形式的缝隙腐蚀。它开始于有机涂层与金属基体的界面位置, 因此通常发生在涂层金属的截面位置或者涂层被破损或划伤的部位。当相对湿度为75%~95%、 温度为20~40℃时, 铝比较容易发生丝状腐蚀。在相对湿度〈30%的盐酸蒸汽中也发现丝状腐蚀现象, 并且随着湿度的提高丝状腐蚀加快。据报道, 典型的丝状腐蚀的平均生长速度为0.1mm/d。由于丝状腐蚀发生在钢铁或铝镁合金的有机聚合物膜的下面, 因此有时候也称为膜下腐蚀(undercoating corrosion)或膜下丝状腐蚀。如果有机物涂层是透明或半透明的, 那末可以透过透明膜清楚看到膜下丝状腐蚀踪迹。这个腐蚀细丝由活性的头部(阳极区)与具有腐蚀产物的尾部(阴极区)组成, 腐蚀过程是由于头部与尾部的差异充气电池所驱动, 腐蚀原理上与缝隙腐蚀完全相同。当然机械地将丝状腐蚀作为缝隙腐蚀的一种形式, 完全忽视有机聚合物膜本身的可渗透性对于基体金属腐蚀的影响, 并不是十分全面与确切的理解, 实际上在观察丝状腐蚀时不可能排除有机涂层的可渗透性的影响。因此在发现膜下丝状并探讨丝状腐蚀的原因和防治措施时, 可能需要进一步更加深入的观察和调查, 至少应该鉴别和考虑有机聚合物膜渗透性对于基体腐蚀的影响。

读书导航