“好心肠”的谣言(2)

小颗粒物最大浓度区的高度不能确定

所谓“扬灰层”,一般的理解就是在这个层高周围,大气中的灰尘浓度最高,超过上下方的其他楼层。这个现象是否存在呢?

有学者对此做过模拟,建立了相关的数学模型,经过公式推算发现:随着高度的增加,空气中的灰尘浓度有先增加后减小的趋势。也就是说,某一直径大小的颗粒物可能会在某个高度上浓度最大。初听之下,这和“扬灰层”的说法很接近。

不过还不能就此定论。首先,这个模型在建立时忽略了灰尘的重力,因而并不适用于重力作用明显、直径较大的颗粒物。其次,即使对于小颗粒物,想要根据这个模型来推算其浓度最大值具体出现在什么高度,也几乎是不可能的任务。

正如前文所述,城市中由于建筑物的影响,空气的无规则“湍流”加剧,气流变化很复杂。在建筑物附近,灰尘分布与建筑物密度、高度、几何形状、门窗朝向、街道宽度和走向、绿化面积、空气中污染物浓度等许多人为因素关系很大。这就必然导致每个地区、每个小区,甚至每栋楼的情况都不同。再加上不同直径的灰尘颗粒浓度最大值出现的高度不同。因此,并没有一个放之四海皆准的“扬灰层”推算公式。

实践检验:相比其他层,差别并不大

理论推导的结果是就算“扬灰层”存在,其影响因素也过于复杂,难以确定其高度。那么实际测量的结果又如何呢?

有媒体曾报道上海一小区的业主们在自家住宅楼内进行了一次为期3天的小实验,在3楼、 10楼和23楼的主卧飘窗位置观察积灰情况。结果显示,3个楼层积灰程度并没有明显差别。当然,这个实验非常粗浅,不过这种实验精神是值得鼓励的。

科学家也做过类似的实验。石家庄某高层建筑附近的颗粒物监测结果显示,空气中直径在微米以下的小颗粒物在距地面24米处(相当于8层上下)呈最大值;直径在微米以下的颗粒物在距地面7米处(相当于3层上下)呈最大值;而直径在10微米以下的颗粒物则随高度增加而减少。总体来说,近地面处灰尘的浓度较高。随高度增加,灰尘总量(总悬浮颗粒物)减少了,而其中微小颗粒物所占比例则越来越大。

这一观测结果验证了理论推论:不同直径的颗粒物,其最大浓度区域位置不同,彼此相隔很远。不可能有哪一层汇聚了所有颗粒物的最大浓度区。

而对于某一种颗粒物的最大浓度区,情况又有多严重呢?我们来看一下上面这个监测结果的具体数字:直径 微米以下的颗粒物的浓度在最大值处(3层上下)为毫克/立方米,在其他层高处为毫克/立方米,只多出了25%;直径微米以下的颗粒物浓度随高度不同变化幅度更小,为~毫克/立方米,相差不到10%。这样的浓度变化值并不算很明显,也难怪上海那几位业主没有看出来积灰程度的差别了。

其实想象一下:如果“扬灰层”真的有那么多灰,一看每个楼都像套了个游泳圈一样,也就没有必要讨论了,绝对不会有人住那几层的。

结论:谣言粉碎。建筑物的9~11楼是扬灰层,这种说法不科学。大气中的大颗粒物通常越靠近地面浓度越高;只有小颗粒物在外力的作用下,有可能在某一高度存在最大浓度区。但是由于影响因素过多,并不一定所有楼房周围都存在这样的最大浓度区。即使存在,对于不同建筑物和不同大小的颗粒物,最大浓度区的高度也各不相同。更重要的是,不同高度间颗粒物浓度只是略有差别而已。

参考资料:

[1]耿磊,刘慧芳.灰尘在空气中的分布规律研究.河南机电高等专科学校学报,

2007(6)

[2]郭斌,任爱玲,李良玉,赵文霞.石家庄秋季可吸入颗粒物的垂直分布特征.中国科学院研究生院学报,2007(5)

[3]黄海静,陈纲.健康城市住区的热环境探析.重庆建筑大学学报,2004(6)

[4]邱洪斌,祝丽玲,张凤梅.城市街道大气颗粒物污染特征及影响因素的研究.黑龙江医药科学,2002(3)

[5]袁杨森,刘大锰,车瑞俊,董雪玲.北京市秋季大气颗粒物的污染特征研究.生态环境,2007(16)

读书导航